There is truth in wine

The Rías Baixas region of Northern Spain is marked by four estuaries — the Rías — the lush lands between which support some 20,000 independent wine growers. The majority of the wine is white because of the unusually resilient Albariño1 grapes, apparently2 brought in by Cistercian monks in the twelfth century. The grape variety proved more than a match for the cool, damp Atlantic climate for many centuries, until the 1870s when the region found itself beset by an aphid called Phylloxera, accidentally imported from the USA by way of a plant specimen sample. The hungry bug devastated3 the continent’s wine harvests and left centuries-old practices in tatters: only vines on the Greek island of Santorini managed to escape, so it is told4.

Wine growers have long memories. First they turned their attentions to hybrid varieties of vine, which were less susceptible to disease though they produced inferior wine. In the 1970s, a hundred years after the event, hybrids were replaced by the lower-yield, yet superior traditional vine types, this time grafted onto Phylloxera-resistant American root stocks. While this was seen by many as a compromise, it nonetheless meant that growers in Albariño and elsewhere could start producing their traditional wines once again. This time however, and aided by EU funding, no expense was to be spared for pesticides.

Today the European Union produces5 some 175 million hectolitres per year (or 141Mhl, depending on the source6), equating to about 65% of global production — another disease like Phylloxera would wipe over €30 billion from Europe’s revenues, according to 2010 figures7. Nearly a third of Europe’s production, and 15% of global production, comes from Spain, the biggest wine grower in the European Union8 with9 some 1.2 million hectares (compared to 910 thousand in Italy and 865 thousand in France).

As yields have been pushed to the max in recent years, wine growers themselves are wondering whether there is a smarter way to minimise the risk of disease without increasing the costs and other potential downsides. The spray-it-all approach is both expensive and unhealthy: according to the 2010 report, viticulture uses double the fungicides10 of other types of crop, and about the same amount of pesticides. “The higher consumption of fungicides in viticulture is due to the fact, that Vitis vinifera has no resistance to introduced fungus diseases and requires chemical protection,” it states. A consequence of such intervention is that agriculture has been suffering from the law of diminishing returns — that is, it has used a series of blunt instruments (including grants and pan-European rulings such as the constraints on vine planting, which are just being removed in 2015) as much as possible, resulting in compromises to flavour and overall results which undermine the point of production in the first place.

Such considerations, as well as the changing climate and economic factors, mean increasing thought about how wine processes themselves can evolve. “Seasons are changing, weather patterns are different, so working practices are also changing. In addition, organic growing is rising as a trend, which goes back towards reaching the natural balance.” Indeed, pesticides are themselves a relatively modern invention. Counterintuitively for luddites at least, technology can deliver at least part of the answer, in the form of sensors that can ‘read’ the qualities of the soil. Not only can resulting analysis determine where and when to apply nutrients (thus saving money and avoiding over-fertilising), they can identify the onset of disease by watching for symptomatic changes to the environment. If vines are being infected, they can be sprayed, isolated or even ripped out before the damage spreads.

A pioneer in this space is Slovenian technologist Matic Šerc, whose company Elmitel is looking11 at the role of sensors12 in wine growing, to monitor temperature, soil composition and so on, and compare the data captured to changes in the weather. Underneath it all is a foundation of technology far broader than just linking the sensors to a computer. The network relies on what has been termed ‘cloud computing’ - that is, making use of processing resources from the Internet. And necessarily so - the sensors generate large amounts of information, which would require more power than even a collective of wine growers would want to fund.

Wine growers, by their nature, are traditionalists so they do not lean towards such use of technology. “In certain areas, 30% of growers don’t have mobile phones, never mind smartphones. It’s not realistic to expect this to skyrocket!" says Matic. This is truer than ever in the Rías Baixas, which is dominated by family-run wineries. Javier Lastres, a local wine grower, never expected to find himself at the forefront of innovation. “We saw that it could be useful, especially for younger people who know how to use computers, he says13.

The results have gone well beyond the aspirations of the growers. Not only can they determine where and when to apply nutrients (saving money and avoiding damaging the land through over-fertilising), they were able to identify the onset of disease, simply by watching for symptomatic changes to the environment. If vines are seen as infected, they can be isolated or even ripped out before the damage spreads to other vines or even vineyards.

So, what about consumption? Let’s go across the Atlantic to the west suburbs of Chicago, Illinois, where employees of label printer company Zebra became aware of a similarly Sideways (check the14 film) insight, that the information being printed on their labels was also of value. The group, which became known as Zatarists15, built a software platform16 to record the data and associate it with the item upon which the label was stuck. A simple enough principle with, as we shall see, potentially far-reaching consequences — not least with wine.

By way of background, I first learned of a rolling wine store when I was living in Paris, and where even apartment blocks have individual cellars. The notion is simple: few people have the facilities to store wine across the long term, but most wine can be kept for five years without too much maintenance. So here’s the plan — simply store the wine you would have drunk now, for five years, and end up with wine that may have cost considerably more (and tastes much nicer!). Of course, this does mean buying twice as much wine for a few years, before the model starts to kick in. Overall however, given the ability to store a hundred bottles of wine, say, and faced with still-floundering interest rates, the mathematics make wine a much better investment than many other options.

As many wine buffs know, a major downside of storing wine is remembering what you have. Occasionally this results in happy accidents of wine that has managed to survive far longer than it should have done, to good effect. Equally often however the wine can go past its prime, losing its flavour or becoming corked. If the idea is to save money on more expensive wine, the economics of the model can quickly become lost. But what if you could know exactly what wines you have in your store, and not only this but the ideal date by which they should be drunk? Suddenly wine storage becomes less of a gamble and therefore more of a financially sound idea.

Which is exactly the kind of model that Zatar was created to support. The company first demonstrated its ‘smart’ wine rack back in 2013, at a Smart Cities conference event in Barcelona. It worked as follows: physical sensors recognise the presence of a bottle in a ‘bay’; details of the wine could be logged and then referenced from a tablet computer. If a bottle was removed, sensors would acknowledge the event. Zatar’s wine rack was very simple yet highly effective, as it created a bridge between the physical and the computer-based, ‘virtual’ world. Once the two are connected however, the impact could be profound — a fact that didn’t go unnoticed to the Zatarists. Today’s smart wine rack also incorporates environmental sensors so cellar owners can be kept informed about changes in temperature, to ensure the environment remains within appropriate criteria — not too warm or cold, for example.

This brings us to a very interesting juncture, which is being felt in all kinds of area. The game is going from one of ‘what if’ — idle speculation about what could be possible — to ‘what about’ as people realise the potential of linking computers with the objects and environments around us. For example, temperature fluctuations are not necessarily a problem; they simply change the longevity of the wine. So, rather than sending an alarm, software could adjust the drink-by dates against each affected bottle. Potentially this information could be linked to criteria defined by the wine grower: each year, and in each region, some wines are deemed to be less susceptible to fluctuations in environmental conditions. The current method is to ask the grower, “How long can I keep this for?” but the reasons and data behind this decision is also known — which links us back to the sensors and data captured during the growing process.

Going one step further, if the wine is good, it also makes sense to provide direct feedback to the grower, as data or comment (or indeed, order another bottle!). And, if fault is found, would the buyer not appreciate a mechanism to let the grower know? A UK company linking growers with consumers is Naked Wines17, which proclaims itself as “a customer-funded wine business.” From the company’s web site you can chat directly to wine growers, including Carlos Rodriguez18, a wine producer who has interests in Albariño production. “Albarino is one of our treasures in Spain,” says19 Carlos. “I make my Albarino wine in the area of Condado, the warmer and sunnier area of Rias Baixas to get as much maturation as possible on the grapes.”

Indeed, if a piece of data can be used to identify a vine and the wine it produces, could it then be used to link the wine bottle, the seller, the buyer, then location it ends up in? Further opportunities exist to bring together the existing pieces — add the ability to ‘recognise a wine from its label or a unique identifier (such as an AVIN20 code) to Libelium’s sensor network21 acting on vines, Zebra’s smart wine rack and Naked Wines’ capability to engage directly with the growers, and you have a closed loop from vine to consumer and back. The wine rack would be able to determine the conditions of the cellar, while an information feed would be able to link this to a certain wine’s propensity to mature. Add a visual display, such as a “drink me now” light flashing on a bottle (or its virtual representation, on the tablet computer), and the loop is closed.

The chain of events linking the vine to the glass is far from completing its evolution. For example, drones are already appearing in wine estates from Bordeaux to Napa as a way of checking ripeness, vine damage and indeed, disease in far-flung fields. “You can teach [^software] what the canopy looks like and it can see quantitative difference in vegetation over time,” explains22 US wine grower Ryan Kunde who has been using drones23 for several years24. Just as growers all over the world are watching each other to see where technology can make a difference, wine is just one element of a wider world of retail and entertainment, both environments which could make additional connections — wine sellers could price their products more accurately or offer cellarage services, while consumers could ‘integrate’ their cellars with menu planning and, if wine really is an investment, how they manage their finances.

We can learn much from the microcosm that is viticulture. Wine is, by its nature, relatively costly and therefore it merits use of similarly costly technology by growers and by consumers. As we see the costs of technology continue to drop, so the domains in which it is used will continue to widen. As costs fall further and technology becomes able to support a broader range of products, we might be able to engage directly with our fruit and veg suppliers, for example. One of the biggest consequences of sledgehammer-based farming approaches was the creation of mountains of meat and grain, as we became too good at producing, beyond our ability to consume. In the future we might well be able to tie supply directly25 with the ultimate creators of demand — individual consumers — protecting the land at the same time as giving people what they want.

Outside food and drink, the wider world is getting smarter as devices from electricity meters, to cashpoints and petrol pumps, all are becoming able to collect and generate information, to provide it to customers and suppliers alike, and support more efficient services. They become possible only because the necessary technological pieces are in place, chugging away behind the scenes, a complex array of components operating in harmony. As we build on such capabilities, we are not only create a wealth of opportunity but also a number of challenges, the most fundamental of which is, “Will we get left behind?” It’s a good question, and there is no doubt that humanity, and its relationship to the resources and other species across the planet, will change fundamentally as a result of what is happening in front of our eyes today.

As we shall see, we lost control of the many headed beast we call technology a long time ago. But does it mean that we will be handing our future off to machines, with the consequence of living in a digital world also mean facing mediocrity and blandness? Perhaps wine holds the answer here as well. “It’s a triangle of the soil, the weather and the vine,” says Matic, who grew up in an environment where the general populace is roped in to help with the grape harvest in the fields once a year (“There’s usually some kind of a ‘party',”, he says). “When you manage vineyards you can manage the soil and you can manage the canopy, to an extent. But you cannot completely switch the soil, or change weather conditions, with technology.” Agrees Ryan, “Wine hasn’t become a commodity; it's still tied directly to the earth.”

So, how can we get the balance right, benefiting from technology without undermining nature? For wine, the key lies in how it can help growers make better informed decisions, helping reduce both costs and risks. “Wine has a story, a personality,” says Matic. “Wine growing has practices that are very old, but the data helps you manage more efficiently, more precisely.” Ultimately wine is more than a product, it is a consequence of everything that takes place to turn the first opening leaves of Spring into the dark reds and crisp whites, the infusion of flavours and textures that bring so much pleasure to so many. But within this framework technology enables growers to become better at their craft, providing the information they need to ‘sniff the air’ and make judgements about when to harvest, and what yields to expect. Clearly, neither humanity nor nature are done with yet.

  1. - (despite being harder to cultivate) 

  2. From the Monastery of Armenteira - Cluny 

  3. - About Wine by J. Henderson, Dellie Rex 







  10. The most used fungicide is sulphur. 

  11. and who is engaged in an accelerator programme in Bordeaux to develop the eVineyard app and service 

  12. from a Madrid-based company called Libelium 













  25. And what of organisations such as the US supermarket chain Wholefoods looking to deepen their relationships with their suppliers and customers?